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The Effect of Precompreesion on the Load-Deflection 
Relations of Long Rubber Bush Mountings 

JAMES M. HILL, Department of Theoretical Mechanics, Universdy of 
Nottingham, Nottingham, England 

s- 
For bonded cylindrical p r e c o m p d  rubber bush mountings theoretical load-deflection 

relations are summanzed for the four principal deformation modes of bushes which are suf- 
ficiently long so that end effecta can be ignored. The relations are illustrated graphically for 
two types of initial compreasion. 

INTRODUCTION 

Rubber bush mountings consisting of cylindrical rubber tubes bonded on their 
outer and inner curved surfaces to effectively rigid metal cylinders are widely 
used as engineering components. Adkins and Gent’ have considered four princi- 
pal modes of deflection of initially unstressed rubber bushes, which they termed 
torsional, axial, radial, and tilting. The object of this work is to consider theo- 
retically the effect of precompression on these modes of deflection for bushes 
which are sUaciently long so that end effects can be ignored. 

The four principal modes of deflection are produced by fixing the outer metal 
cylinder while the inner one undergoes the following displacements: (i) a rota- 
tion about its axis (torsional), (ii) a translation in which each point move8 
parallel to the a& (axial), (iii) a translation in which each point moves through 
an equal distance in a radial direction (radial), and (iv) a rotation of the axis in a 
radial plane about a point on itself midway between the plane ends of the tube 
(tilting or conical). 

In situations where large radial loads are expected, the rubber is precompressed 
on assembly in its housing. This effectively involves forcing the rubber tube 
over the inner cylinder and then forcing the outer cylinder over the rubber. 
The rubber is either “cold” bonded to the metal cylinders or, for situations where 
axial loads are not expected to be large, is not bonded at  all. For no bonding, 
we Mume that the initial compression is su5ciently large so as to prevent slip- 
ping between the rubber and the metal cylinders. We also assume that the 
initial compression can be approximated by a uniform radial inflation plus a 
simple extension parallel to the axis of the bush. 

The problem of determining the load-deflection relations for the four principal 
modes of deflection superimposed upon this initial compression is mathematically 
a difiicult one. However, for long bushes such relations can be derived which 
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should at least provide some theoretical basis for the design of precompressed 
bushes. The torsional and axial relations are due to Rivlin,' while those for 
radial and tilting deformations have not been given previously and are derived in 
the Appendix. These relations are also applicable to bushes of finite lengths if 
suitable forces are applied to restrict the movement of the initially plane surfaces 
of the rubber tube. 

In the following section, we define the geometry of the bush and the materials 
for which the subsequent results are applicable. We also give the relations de- 
scribing the initial compression of the bush. In the section thereafter, we sum- 
marize existing formulae for the load-deflection relations of long bushes. We 
then show graphically the effect of compression on the four principal deformation 
modes for two different types of initial compression. Load-deflection relations 
for radial and tilting deformations are derived in the Appendix. 

THEORETICAL PRELIMINARIES 

We aawme that the undeformed rubber tube has initially internal and external 
radii A and B, respectively, and is of length L. The material is assumed to be a 
homogeneous isotropic incompressible elastic material with strain-energy func- 
tion 

(1) 

given by the Mooney form 

c = CdIl - 3) + Cdlz - 3) 
where I1 and I 2  are the principal invariants of the finite deformation strain tensor 
and CI and C2 are material constants. The linear shear modulus cco is given by 

cco = 2(Cl + C2). (2) 
We shall also consider the neo-Hookean material which has strain-energy function 
given by eq. (1) with C2 = 0. 

We suppose that the initial compression of the tube is effected by a deformation 
which increases the internal radius to a, decreases the external radius to b, and 
extends the length of the tube to 1. These dimensions can be shown to be related 
to the initial dimensions of the tube by the equations 

where a and 8 are constants which we shall consider to be determined by the initial 
and final radii of the tube, that is, 

Further details of this deformation are given in the Appendix. 

LOAD-DEFLECTION RELATIONS 

In this section, we give the load-deflection relations for long bushes for the four 
principal deformation modes which are superimposed on the initial compression. 

(i) Torsional Deflections 
Rivlin'haa shown that the couple M required to rotate the inner metal cylinder 

about its axis through an ingle 8 which is not necessarily small is given by 
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(5 )  

while for an initially unstressed rubber bush the couple Mo is given by 

(6) 

We note that eq. (6) can be obtained from (5) be setting CY = 1 and letting /3 tend 
to zero! 

A2B2L8 
(B2 - A2)  * 

Mo = 4*c(0 

(ii) Axial Deflections 

Rivlina has also shown that the force F required to displace the inner metal 
cylinder through a distance z parallel to its axis is given by 

The distance z is again not necessarily small, and from (7) we find that the force 
Fo for an initially unstressed bush is given by 

We remind the reader that eqs. (5) and (7) are strictly only valid for large strains 
for the case of long bushes and that, if applied to bushes of moderate lengths, 
departures from experimental findings will occur which will increase with increas- 
ing strains. 

(iii) Radial Deflections 

In the Appendix, we show that for small radial deformations the force G which 
is required to displace the inner metal cylinder a distance e uniformly along its 
length in a radial direction is given by 

G = 32r(C1 + 2) 
(9) 

K z [ ( B 2  + K ) 2  - (A2 + K)2]Le 
(4(B' - A')[(B* + K ) 2  - (A2  + KI2I - [dB)  - #(A)I*)  

where K = Ba-' and the function 4(R)  is defined by 

$(R) = K2 log (R + V E )  - R G G E  (2R4 + K ) .  (10) 
For an initially unstressed bush, the force Go is given by' 

(11) 
4wl(o(A2 + B2)Le 

B 
[(A2 + B2) log - - (B2 - A 2 ) ]  

A 

Go = 

and this result can also be derived from eq. (9) by taking the limit as K tends to 
zero. 
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(iv) Tilting or Conical Deflections 

Also in the Appendix we show that for long bushes the couple N required to 
rotate the rwriS of the inner metal cylinder through a small angle 6 about its mid- 
point is given by 

where G/e is obtained from eq. (9). Similarly for an unstressed bush, we have 
that the couple No is given by 

where Go/€ is obtained from (11). 

the four ratios 
In the final section, we show graphically the variation with initial compression of 

N F G f = - ,  g = -  M 
M,' Fo Go' No 

n = -. m = -  (14) 

For the tilting ratio, we note that we have simply 

NUMERICAL RESULTS 

In order to illustrate the lod-deflection relations of the previous section, we 
consider two types of initial compression. First, we suppose that the inner radius 
of the tube is increased while the outer is unchanged, so that b = B. If we d e h e  

then from eq. (4) we obtain 

(u2sZ - 1) 
zyu2 - 1)' 

By1  - 2 2 )  
a =  

= zyu* - 1) 

and since a 2 A and b > a, we have 

1 
- < s  < 1. 
U 

For the second type of initial compression, we suppose that the inner radius is 
In this case, we unchanged so that a = A and the outer radius is decreased. 

d e h e  
b 

Y = j j  

and again from (4) we obtain 

(."y2 - 1) By1 - g) 
(d - 1) ) = (u2 - 1) a =  
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Fig. 1. Variation of the ratios m, f, g, and n with the first type of initial comprwion for a neo- 
Hookean material (Ct = 0). 
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Fig. 2. Variation of the ratios m, f, g, and n with the second type of initial cornprassiaa far a 
nea-Hmkean mrteriir) (C, = 0). 

and we have 

(21) 
1 
- < y < 1 .  
U 

For A = 1 and B = 3, Figures 1 and 2 show graphically the variation of the 
ratios m, g, and n with 1 - z and 1 - y, respectively, for a neo-Hookean material. 
We note that for this material, C2 = 0; and so from (7) and (8) we have F = 
Fo and thus f = 1. For the same initial radii, Figures 3 and 4 give the variation 
of the ratios for a Mooney material with Cz/C, = 0.1, which is the value suggested 
by Rivlin and Thomas.' 

In conclusion, for bonded cylindrical precompressed rubber bush mountings, 
we have summarized theoretical load-d&ection relations for the four principal 
deformation mode?.. The torsional and axial relations are due to  R i ~ l i n , ~  while 
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Fa. 3. Vpriation of the rrtaiorr m, f, 8, and n with the first type of initial cornpression for a 

Mooney material (C&1 = 0.1). 
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Fig. 4. Variation of the ratios rn, f, g, and n with the second type of initial compression for a 
Mooney material (C2/C1 = 0.1). 

those for radial and tilting deformations are derived in the Appendix. These 
relations apply to bushes which are sufficiently long so that end effects can be 
ignored, or to bushes of finite lengths if suitable forces are applied to the initially 
plane surfaces of the rubber tube to restrict the movement of these surfaces. The 
load-deflection relations are illustrated graphically for two types of initial com- 
pression for the neo-Hookean and Mooney materials. 

Appendix 
Before deriving the load-deflection relations for small radial and tilting deformations super- 

imposed upon the initial compression, we summarize the general theory for large elastic plane 
deformations of a Mooney material. For material and spatial cylindrical polar coordinates 
(R, 8, 2) and (r, e, z), respectively, we consider the plane deformation 

z 
= r(R, e), e = e(R, el, z = - 

a 
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where a is a positive constant. For an incompressible material, eqs. (A.l)  satisfy the condition 

aR 
r& - r& = - 

r 

where TR, e& etc., denote partial derivatives. 
compressible Mooney material can be shown to become' 

The equilibrium equations for an isotropic in- 

where p*  is the pressure function associated with incompressible materials, pis a constant given 
by 

p = 2(c1 + $) 
where C1 and Cz are the Mooney constants, and V' is the two-dimensional Laplacian, that is, 

az I 1 V' = - + -- + - -. 
bR' R b R  R'be' 

The contravariant components of the Cauchy stress tensor are given by 

t" = - p *  + p(rR' + 2;) 

2 
a 

t a x  = - p *  + 3 [CI + Cz(I - a')] 

where Z is given by 

and all other components of the stress tensor are zero. Using (A6), we can deduce that the 
force G which must be applied in the direction 8 = 0 to a cylinder which is given originally by 
the circular cylinder R = constant is given by 

T r 2 *  
G =  - -  J [ - p * ( ~  sin e)e + paR(r cos 0 ) ~ I d e  

a 0  

where L is the original length of the cylinder. 

liminaries is assumed t o  be effected by the deformation 
The initial compreasion of the rubber tube as described in the section on theoretical pre- 

where a and 8 are constants given by (4). 
this deformation is given by 

From (A3), we find that the pressure function for 
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where p is a constant. The stress tensort&' corresponding to (A9) is now easily obtained from 
(A6), and we assume that the constant p is determined by the condition 

which approximates the boundary condition of no surface tractions on the plane ends of the 
bush. 

For small radial deformations superimposed upon this initial compression, the displacement 
boundary cdnditions on the inner cylinder suggest we look for solutions of (A2) and (A3) of the 
form 

r = da~' + B + &(R) cos e 

where u, u, and p are functions of R only and e is the distance moved by the inner cylinder in the 
direction 8 = 0. The displacement boundary conditions a t  the inner and outer cylinders now 
become 

u(B)  = 0, u(B)  = 0 

where K = Ba-'.  In the physical stituation which is of interest, we have a 3 A and 6 6 B, 
from which we can deduce using eq. ( 4 )  that K 2 0, and we shall assume throughout that this is 
the case. From (A2) and (A3) we obtain, on equating terms of order t, the following ordinary 
differential equations for the functions u(R), u(R), and p(R):  

+ R * +  K ~ ' +  U 

R ~ R T K + ' = O  

Kzu' } (A14) 
R u' 2u 2 

= '{ dR'+K [ uw + - 124 - - RS(R1 + K):/s  

u' v 2Ru' 2u 
- p  = p (R'+  K )  U" + - - - + ~ - { [ R Rz  (R'+  K )  R Z d B T ]  RZ(RZ+ K)'Ia 

where primes denote differentiation with respect to R. 
have the following solutions: 

It can be verified that these equations 

raR 

K R  
( R  + 1/RS + K )  

+ yt { R % / R ~  + K + K log ( R  + diiGi)] + dE + 7.4 

( ~ 1 5 )  

( R  + d R '  + K )  - 

2K K 
- YX (3R + + 1/R'+K log ( R  + d R ' K ) }  - - d& 

R' 
P ( R )  = yip 

YS&' 

R(R* + K ) *  + 27% (4RI - K )  - 
R 
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where 71, 7 2 ,  ya, and yc are four arbitrary constants which are determined by the boundary 
conditions (A13). 

Now, from (A8) and (A12) we find that the force G required to maintain the deformation is 
given by 

(A161 G = -srL { - p ( R ) d m  + pR [u(R) - v (R)  d R 2  + KI') 

which on using the solutions (A15) can be shown to become 

G = 8rj~eKLy1. (A17) 

From the solutions (A15) and the boundary conditions (A13), we find that yl is given by 

where the function + ( R )  is defined by (10). Thus from (A4), (A17) and (AH) we have the 
loaddeflection relation (9) for radial deformations. 

In  order to obtain the load4eflection relation for small superimposed tilting deflections of 
long rubber bushes, we use the argument employed by Adkins and Gent' for unstressed bushes. 
If the inner metal cylinder of the bush is rotated through a small angle 6 about its midpoint, 
then formally to obtain the couple N which is required to maintain the deformation we replace 
by 6z and L by dZ in (A17) and integrate the moment z dG over the length of the bush, that is, 

which, on using (Al), and (A17), yields the load-deflection relation (12). 
ferred to Adkins and Gent' for the precise details of the argument. 

The reader is re- 
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